產(chǎn)品編號 | bs-6165R |
英文名稱 | GTPase HRAS Rabbit pAb |
中文名稱 | 轉(zhuǎn)化蛋白p21抗體(原癌基因H-ras抗體) |
別 名 | p21ras; Transforming protein p21; GTPase HRas; GTPase KRas; HRas; HRAS1; KRas; KRAS2; RASH; RASK; RASH_HUMAN; RASK_HUMAN. |
研究領(lǐng)域 | 腫瘤 細胞生物 信號轉(zhuǎn)導(dǎo) 轉(zhuǎn)錄調(diào)節(jié)因子 G蛋白偶聯(lián)受體 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | Human (predicted: Mouse,Rat,Cow,Chicken,Horse) |
產(chǎn)品應(yīng)用 | WB=1:500-2000
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
理論分子量 | 21 kDa |
檢測分子量 | |
細胞定位 | 細胞核 細胞漿 |
性 狀 | Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human HRAS+KRAS: 51-150/189 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
緩 沖 液 | 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol. |
保存條件 | Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles. |
注意事項 | This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
PubMed | PubMed |
產(chǎn)品介紹 |
The KRAS gene encodes the human cellular homolog of a transforming gene isolated from the Kirsten rat sarcoma virus. The RAS proteins are GDP/GTP-binding proteins that act as intracellular signal transducers. The most well-studied members of the RAS (derived from 'RAt Sarcoma' virus) gene family include KRAS, HRAS, and NRAS. These genes encode immunologically related proteins with a molecular mass of 21 kD and are homologs of rodent sarcoma virus genes that have transforming abilities. While these wildtype cellular proteins in humans play a vital role in normal tissue signaling, including proliferation, differentiation, and senescence, mutated genes are potent oncogenes that play a role in many human cancers. Function: Ras proteins bind GDP/GTP and possess intrinsic GTPase activity. Subunit: In its GTP-bound form interacts with PLCE1. Interacts with TBC1D10C. Interacts with RGL3. Interacts with HSPD1. Found in a complex with at least BRAF, HRAS1, MAP2K1, MAPK3 and RGS14. Interacts (active GTP-bound form) with RGS14 (via RBD 1 domain) (By similarity). Forms a signaling complex with RASGRP1 and DGKZ. Interacts with RASSF5. Interacts with PDE6D. Interacts with IKZF3. Interacts with GNB2L1. Interacts with PIK3CG; the interaction is required for membrane recruitment and beta-gamma G protein dimer-dependent activation of the PI3K gamma complex PIK3CG:PIK3R6 (By similarity). Subcellular Location: Isoform 2: Nucleus. Cytoplasm. Cytoplasm, perinuclear region. Note=Colocalizes with GNB2L1 to the perinuclear region. Tissue Specificity: Widely expressed. Post-translational modifications: Palmitoylated by the ZDHHC9-GOLGA7 complex. A continuous cycle of de- and re-palmitoylation regulates rapid exchange between plasma membrane and Golgi. S-nitrosylated; critical for redox regulation. Important for stimulating guanine nucleotide exchange. No structural perturbation on nitrosylation. The covalent modification of cysteine by 15-deoxy-Delta12,14-prostaglandin-J2 is autocatalytic and reversible. It may occur as an alternative to other cysteine modifications, such as S-nitrosylation and S-palmitoylation. Acetylation at Lys-104 prevents interaction with guanine nucleotide exchange factors (GEFs) (By similarity). DISEASE: Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:218040]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities. Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:218040]. CMEMS is a variant of Costello syndrome. Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:607464]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC). Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:163200]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis. Similarity: Belongs to the small GTPase superfamily. Ras family. SWISS: P01111 Gene ID: 4893 Database links: Entrez Gene: 3265 Human Entrez Gene: 15461 Mouse Omim: 190020 Human SwissProt: P01112 Human SwissProt: Q61411 Mouse Unigene: 37003 Human Unigene: 334313 Mouse Unigene: 102180 Rat |
產(chǎn)品圖片 | |
1、抗體溶解方法 | |
2、抗體修復(fù)方式 | |
3、常用試劑的配制 | |
4、免疫組化操作步驟 | |
5、免疫組化問題解答 | |
6、Western Blotting 操作步驟 | |
7、Western Blotting 問題解答 | |
8、關(guān)于肽鏈的設(shè)計 | |
9、多肽的溶解與保存 | |
10、酶標抗體效價測定程序 | |
| 成人人妻A片一区二区 | 91狠狠色综合久久久夜色撩人 | 国产毛片精品一区二区色欲黄A片 | 午夜免费看一级AAA片 | 丰满人妻中伦妇伦精品久久 | 无码人妻精品内AV | 拍国产真实乱人偷精品 | 国产丰满乱子伦无码 | 国产精品无码人妻一区二区在线 | www免费视频无码高清 | 日本一区二区三区久久 | 96久久夜色精品国产九色杨思敏 | 狠色综合7777夜色撩人 | 精品裸体舞一区二区三区 | 91无码粉嫩小泬无套在线哈尔滨 | 国产精品久久久久毛片大屁完整版 | 中文字幕免费高清 | 性一交一无一乱一在线观看 | 四季AV一区二区凹凸精品 | 国产精品美女久久久久AV超清 | 中文字幕一区二区三区AⅤ吉川 | 亲子乱婬一级A片 | 欧美丰满少妇a毛片直播 | 久久嫩草av一级无码专区 | 三色黄A片免费播放 | 搡六十70老女人老熟女视频 | av网站在线播放 | 综合久久,综合色蜜桃 | 国产极品美女无套抽搐高潮91 | 久久99热这里只频精品 | 亚洲一区二区三区含羞草 | 印度强奸av手机天堂网 | 久久久久久久综合影视 | 张天爱精品无码AV一区 | 国产真人做满A片免费 | 欧美A级成人婬片免费看 | 国产中文字幕在线观看 | 国产精品成人无码免费 | 婬片艳片A片欧美精品极度变态 | 91精品人妖一区二区三区四区 |