强伦轩一级A片在线观看,中文字幕乱码人妻二区三区,鲁鲁狠狠狠7777一区二区,西西4444www无码精品
掃碼關(guān)注公眾號           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  關(guān)于我們  聯(lián)系我們
高清无码视频在线观看,国产欧美日韩在线,,精品人妻aV中文字幕乱码
首頁 > 新聞動(dòng)態(tài) > 正文
【2024年2月文獻(xiàn)戰(zhàn)報(bào)】Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)
發(fā)表者:北京博奧森生物      發(fā)表時(shí)間:2024-5-28

截止目前,引用Bioss產(chǎn)品發(fā)表的文獻(xiàn)共29281篇,總影響因子141751.15分,發(fā)表在Nature, Science, Cell以及Immunity等頂級期刊的文獻(xiàn)共68篇,合作單位覆蓋了清華、北大、復(fù)旦、華盛頓大學(xué)、麻省理工學(xué)院、東京大學(xué)以及紐約大學(xué)等國際知名研究機(jī)構(gòu)上百所。

我們每月收集引用Bioss產(chǎn)品發(fā)表的文獻(xiàn)。若您在當(dāng)月已發(fā)表SCI文章,但未被我公司收集,請致電Bioss,我們將贈(zèng)予現(xiàn)金鼓勵(lì),金額標(biāo)準(zhǔn)請參考“發(fā)文章 領(lǐng)獎(jiǎng)金”活動(dòng)頁面。

近期收錄2024年2月引用Bioss產(chǎn)品發(fā)表的文獻(xiàn)共363篇(圖一,綠色柱),文章影響因子(IF) 總和高達(dá)2298.3,其中,10分以上文獻(xiàn)45篇(圖二)。


圖一


圖二

本文主要分享引用Bioss產(chǎn)品發(fā)表文章至NatureImmunityCancer Cell等期刊的5篇 IF>15 的文獻(xiàn)摘要,讓我們一起欣賞吧。


Molecular Cancer [IF=37.3]


文獻(xiàn)引用產(chǎn)品:bsm-33070M

Ki-67 Mouse mA | IHC

作者單位:重慶醫(yī)科大學(xué)

摘要:CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway.


Cellular & Molecular Immunology [IF=24.1]

文獻(xiàn)引用抗體:

bs-2789R; Tap1 Rabbit pAb | FC

bs-2374R; TAP2 Rabbit pAb | FC

作者單位:北京大學(xué)

要:CD4+ T cells can "help” or "license” conventional type 1 dendritic cells (cDC1s) to induce CD8+ cytotoxic T lymphocyte (CTL) anticancer responses, as proven in mouse models. We recently identified cDC1s with a transcriptomic imprint of CD4+ T-cell help, specifically in T-cell-infiltrated human cancers, and these cells were associated with a good prognosis and response to PD-1-targeting immunotherapy. Here, we delineate the mechanism of cDC1 licensing by CD4+ T cells in humans. Activated CD4+ T cells produce IFNβ via the STING pathway, which promotes MHC-I antigen (cross-)presentation by cDC1s and thereby improves their ability to induce CTL anticancer responses. In cooperation with CD40 ligand (L), IFNβ also optimizes the costimulatory and other functions of cDC1s required for CTL response induction. IFN-I-producing CD4+ T cells are present in diverse T-cell-infiltrated cancers and likely deliver “help” signals to CTLs locally, according to their transcriptomic profile and colocalization with “helped/licensed” cDCs and tumor-reactive CD8+ T cells. In agreement with this scenario, the presence of IFN-I-producing CD4+ T cells in the TME is associated with overall survival and the response to PD-1 checkpoint blockade in cancer patients.


ADVANCED FUNCTIONAL MATERIALS [IF=19.0]

文獻(xiàn)引用產(chǎn)品:bs-4917R

Osteocalcin Rabbit pAb | IF

作者單位:北京大學(xué)口腔醫(yī)院

摘要:Utilization of electro-responsive biomaterials with antibacterial properties is advantageous for facilitating septic wound healing and tissue regeneration. However, the dose-response effects of electrical stimuli from these materials against bacteria are not rigorously characterized, and achieving synergy of bactericidal and pro-regenerative effects of biomaterials remains a major challenge. Here, a graded series of flexible BaTiO3/P(VDF-TrFE) electroactive nanocomposite membranes (EMs) are developed with varying surface charge intensities, to serve as antibacterial dressing for septic wound healing. EMs display broad-spectrum antibacterial effects against both Gram-positive and Gram-negative bacteria in a dose-dependent manner, depending on the magnitude of their surface electrical potential. Mechanistically, the surface charge of EMs increase intracellular levels of reactive oxygen species within bacteria cells, which in turn caused oxidative damage to the bacterial membrane, thereby suppressing bacterial activity and biofilm formation. Moreover, in vivo studies demonstrated that EMs effectively inhibited S. aureus infection and accelerated wound healing in a mouse skin defect model, as well as ameliorated P. gingivalis-mediated periodontal inflammation in a mouse periodontitis model. Hence, this study optimizes the antibacterial properties of electroactive materials and characterizes the dose-response effects of surface electrical charge against bacteria, thus validating the therapeutic applications of electroactive biomaterials in combating bacterial infection.


ACS Nano [IF=17.1]

文獻(xiàn)引用抗體:

bs-0292P; BSA-V

D-9106; DAPI

bsm-33070M; Ki-67 Mouse mAb | IF

作者單位:北京大學(xué)

摘要:Cancer progression and treatment-associated cellular stress impairs therapeutic outcome by inducing resistance. Endoplasmic reticulum (ER) stress is responsible for core events. Aberrant activation of stress sensors and their downstream components to disrupt homeostasis have emerged as vital regulators of tumor progression as well as response to cancer therapy. Here, an orchestrated nanophotoinducer (ERsNP) results in specific tumor ER-homing, induces hyperthermia and mounting oxidative stress associated reactive oxygen species (ROS), and provokes intense and lethal ER stress upon near-infrared laser irradiation. The strengthened “dying” of ER stress and ROS subsequently induce apoptosis for both primary and abscopal B16F10 and GL261 tumors, and promote damage-associated molecular patterns to evoke stress-dependent immunogenic cell death effects and release “self-antigens”. Thus, there is a cascade to activate maturation of dendritic cells, reprogram myeloid-derived suppressor cells to manipulate immunosuppression, and recruit cytotoxic T lymphocytes and effective antitumor response. The long-term protection against tumor recurrence is realized through cascaded combinatorial preoperative and postoperative photoimmunotherapy including the chemokine (C–C motif) receptor 2 antagonist, ERsNP upon laser irradiation, and an immune checkpoint inhibitor. The results highlight great promise of the orchestrated nanophotoinducer to exert potent immunogenic cell stress and death by reinforcing ER stress and oxidative stress to boost cancer photoimmunotherapy.


Advanced Science [IF=15.1]

文獻(xiàn)引用抗體:

bs-0292P-FITC; BSA / FITC | IF

bsm-60235R; Keratin 6 Recombinant Rabbit mAb | IF

作者單位:南方醫(yī)科大學(xué)

摘要:To address current challenges in effectively treating large skin defects caused by trauma in clinical medicine, the fabrication, and evaluation of a novel radially aligned nanofiber scaffold (RAS) with dual growth factor gradients is presented. These aligned nanofibers and the scaffold's spatial design provide many all-around “highways” for cell migration from the edge of the wound to the center area. Besides, the chemotaxis induced by two growth factor gradients further promotes cell migration. Incorporating epidermal growth factor (EGF) aids in the proliferation and differentiation of basal layer cells in the epidermis, augmenting the scaffold's ability to promote epidermal regeneration. Concurrently, the scaffold-bound vascular endothelial growth factor (VEGF) recruits vascular endothelial cells at the wound's center, resulting in angiogenesis and improving blood supply and nutrient delivery, which is critical for granulation tissue regeneration. The RAS+EGF+VEGF group demonstrates superior performance in wound immune regulation, wound closure, hair follicle regeneration, and ECM deposition and remodeling compared to other groups. This study highlights the promising potential of hierarchically assembled nanofiber scaffolds with dual growth factor gradients for wound repair and tissue regeneration applications.


版權(quán)所有 2004-2026 www.nmgps.com 北京博奧森生物技術(shù)有限公司
通過國際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
大乱婬交欧美视频一区直播 | 久久99精品国产.久久久久久 | 精品人妻无码一区二区三区古桃屋 | 激情婬乱A片吸吸视频 | 91中文字幕在线观看 | 成人午夜啪免费视频在线观看软件 | 亚洲中文字幕在线中出 | 人妻熟妇国产乱码精品精 | 久久久 成人网站免费观看 99热成人精品热久久66 | 高清无码十八 成人在线免费观看 | 两个人看的www在线视频 | 国产精品一区人妻精品阁在线 | 懂色av懂的av粉嫩av无码 | 国產又粗又猛又爽又黄 | 91丨九色丨白浆秘 | 欧美肥婆与黑人精品无码 | 黄色视频日本国产成人 | 在线免费观看中文字幕 | 一级毛片久久久久久久女人18 | 黑人性猛交AAA毛片 午夜呻吟一区二区三区 | 国产真实滛乱精品HD | 囯产伦精一区二区三区妓 | 色情无码AⅤ苍井空 | 人人妻人人澡人人爽人人视频 | 熟女 的搜索结果 - 91n | 免费一级婬A片久久久爽死你网站 | 高清无码一区二区三区在线视频 | 欧美一级不卡一二三 | 国产福利姬在线观看免费 | 国产日韩av高清无码 | 国产激情综合五月久久 | 欧美精品少妇猛烈进入A片免费看 | 农村妇女一级A片免费播放 无码中文AV一区二区三巨 | 无码国产精品一区二区高潮 | 亚洲一级午夜福利不卡片 | 园产乱人乱偷精品视频 | 国产A级毛片久久久久久 | 久久武侠古典第一页 | 近親相奷中文字幕8MV | 特级西西4444WWW无码 | 真人做爰试看120秒 日韩精品一区二区无码 |