產(chǎn)品編號 | bs-2905R-BF594 |
英文名稱 | Rabbit Anti-LRP6/BF594 Conjugated antibody |
中文名稱 | BF594標記的低密度脂蛋白受體相關蛋白6抗體 |
別 名 | ADCAD2; C030016K15Rik; Cd; FLJ90062; FLJ90421; Low density lipoprotein receptor related protein 6; LRP6_HUMAN; Low-density lipoprotein receptor-related protein 6; low-density lipoprotein receptor-related protein 6 precursor; LRP-6. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
研究領域 | 腫瘤 心血管 免疫學 激酶和磷酸酶 糖尿病 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應 | (predicted: Human, Mouse, Rat, Dog, Pig, Cow, Horse, Rabbit, ) |
產(chǎn)品應用 |
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 175kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human LRP6 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: This gene encodes a member of the low density lipoprotein (LDL) receptor gene family. LDL receptors are transmembrane cell surface proteins involved in receptor-mediated endocytosis of lipoprotein and protein ligands. The protein encoded by this gene functions as a receptor or, with Frizzled, a co-receptor for Wnt and thereby transmits the canonical Wnt/beta-catenin signaling cascade. Through its interaction with the Wnt/beta-catenin signaling cascade this gene plays a role in the regulation of cell differentiation, proliferation, and migration and the development of many cancer types. This protein undergoes gamma-secretase dependent RIP- (regulated intramembrane proteolysis) processing but the precise locations of the cleavage sites have not been determined.[provided by RefSeq, Dec 2009]. Function: Component of the Wnt-Fzd-LRP5-LRP6 complex that triggers beta-catenin signaling through inducing aggregation of receptor-ligand complexes into ribosome-sized signalsomes. Cell-surface coreceptor of Wnt/beta-catenin signaling, which plays a pivotal role in bone formation. The Wnt-induced Fzd/LRP6 coreceptor complex recruits DVL1 polymers to the plasma membrane which, in turn, recruits the AXIN1/GSK3B-complex to the cell surface promoting the formation of signalsomes and inhibiting AXIN1/GSK3-mediated phosphorylation and destruction of beta-catenin. Required for posterior patterning of the epiblast during gastrulation. Subunit: Homodimer; disulfide-linked. Forms phosphorylated oligomer aggregates on Wnt-signaling. Forms a WNT-signaling complex formed of a WNT protein, a FZD protein and LRP5 or LRP6. Interacts (via the extracellular domain) with WNT1; the interaction is enhanced by prior formation of the Wnt/Fzd complex. Interacts (via the beta-propeller regions 3 and 4) with WNT3A. Interacts (via the beta-propeller regions 1 and 2) with WNT9B. Interacts with FZD5; the interaction forms a coreceptor complex for Wnt signaling and is inhibited by DKK1 and C1orf187. Interacts (via beta propeller regions 3 and 4) with DKK1; the interaction inhibits FZD5/LRP6 complex formation. Interacts with DKK2. Interacts with C1orf187/DRAXIN; the interaction inhibits Wnt signaling. Interacts (via the phosphorylated PPPSP motifs) with AXIN1; the interaction recruits the AXIN1/GSK3B complex to cell surface LRP6 signalsomes. Interacts with GRB10; the interaction prevents AXIN1 binding, thus negatively regulating the Wnt signaling pathway. Interacts (via the extracellular domain) with RSPO1; the interaction activates Wnt/beta-catenin signaling. Interacts (via the extracellular domain) with RSPO3 (via the cysteine rich domain); the interaction activates Wnt/beta-catenin signaling. Interacts (via the beta-propeller regions 1 and 2) with SOST; the interaction competes with DKK1 for binding for inhibiting beta-catenin signaling. Interacts with MESD; the interaction prevents the formation of LRP6 aggregates and targets LRP6 to the plasma membrane. Interacts (via the cytoplasmic domain) with CSNKIE; the interaction phosphorylates LRP6, binds AXIN1 and inhibits AXIN1/GSK3B-mediated phosphorylation of beta-catenin. Interacts with MACF1. Subcellular Location: Membrane; Single-pass type I membrane protein. Endoplasmic reticulum. Note=On Wnt signaling, undergoes a cycle of caveolin- or clathrin-mediated endocytosis and plasma membrane location. Released from the endoplasmic reticulum on palmitoylation. Mono-ubiquitination retains it in the endoplasmic reticulum in the absence of palmitoylation. On Wnt signaling, phosphorylated, aggregates and colocalizes with AXIN1 and GSK3B at the plasma membrane in LRP6-signalsomes. Chaperoned to the plasma membrane by MESD. Tissue Specificity: Widely co-expressed with LRP5 during embryogenesis and in adult tissues. Post-translational modifications: Dual phosphorylation of cytoplasmic PPPSP motifs sequentially by GSK3 and CK1 is required for AXIN1-binding, and subsequent stabilization and activation of beta-catenin via preventing GSK3-mediated phosphorylation of beta-catenin. Phosphorylated, in vitro, by GRK5/6 within and outside the PPPSP motifs. Phosphorylation at Ser-1490 by CDK14 during G2/M phase leads to regulation of the Wnt signaling pathway during the cell cycle. Phosphorylation by GSK3B is induced by RPSO1 binding and inhibited by DKK1. Phosphorylated, in vitro, by casein kinase I on Thr-1479. Undergoes gamma-secretase-dependent regulated intramembrane proteolysis (RIP). The extracellular domain is first released by shedding, and then, through the action of gamma-secretase, the intracellular domain (ICD) is released into the cytoplasm where it is free to bind to GSK3B and to activate canonical Wnt signaling. Palmitoylation on the two sites near the transmembrane domain leads to release of LRP6 from the endoplasmic reticulum. Mono-ubiquitinated which retains LRP6 in the endoplasmic reticulum. N-glycosylation is required for cell surface location. DISEASE: Defects in LRP6 are the cause of autosomal dominant coronary artery disease type 2 (ADCAD2) [MIM:610947]. Similarity: Belongs to the LDLR family. Contains 4 EGF-like domains. Contains 3 LDL-receptor class A domains. Contains 20 LDL-receptor class B repeats. Database links: Entrez Gene: 4040 Human Entrez Gene: 16974 Mouse Omim: 603507 Human SwissProt: O75581 Human SwissProt: O88572 Mouse Unigene: 584775 Human Unigene: 658913 Human Unigene: 321990 Mouse Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
1、抗體溶解方法 | |
2、抗體修復方式 | |
3、常用試劑的配制 | |
4、免疫組化操作步驟 | |
5、免疫組化問題解答 | |
6、Western Blotting 操作步驟 | |
7、Western Blotting 問題解答 | |
8、關于肽鏈的設計 | |
9、多肽的溶解與保存 | |
10、酶標抗體效價測定程序 | |
| 天天射日日射人人射 | 精品久久久久久久 | 91欧美精品成人AAA片 | 国内揄拍国内精品久久 | 成人A片无码永久免费游戏 农村婬乱生活A片1一15 | 日韩精品久久无码人妻免费 | 成人无码一级A片播放视频 蜜桃AV网站无码成人一区 | 欧美黄片在线免费观看 | 国产精品a久久久久久久 | 欧美一级片在线观看 | 91在线无码精品在线观看 | the Porn 日本在线观看 | 精品国产乱码久久久久久蜜柚 | 91 国产丝袜在线播放竹菊 | 精品蜜桃久久久久久久 | 国产淫伦久久久久久久 | 红桃视频网站一区二区精品 | 亚洲精品无码成人A片在线沈先生 | 国产精品成人AAAA网站女吊丝 | 内射蜜桃臀在线观看 | 欧美媚黑国产一区二区 | 久久国产乱子伦精品一区二区 | 亚洲无码高清视频在线观看 | 国产一a毛一a毛A免费看图 | 黄色成人视频在线观看 | 国产亚洲色婷婷久久精品 | 国产高清无码在线播放 | 亚洲无码一区在线 | 又大又粗又硬又黄的无码视频 | 亚洲无码久久久久 | 亚洲一区二区中文字幕 | 【乱子伦】国产精品 | 91精品无码一区二区 | 免费看成人AA片无码视频吃奶 | 欧美成人在线精品在线观看 | 成人无码电影AV一区二区 | 国产又粗又黄又爽视频 | 无码人妻aⅴ一区二区三区 成人爱爱视频免费在线播放 | 日婬片A片AAA毛片在线少妇 | 漂亮人妻洗澡被强公BD |