產(chǎn)品編號 | bs-5662R-RBITC |
英文名稱 | Rabbit Anti-phospho-NFKB p65(Thr254)/RBITC Conjugated antibody |
中文名稱 | 羅丹明(RBITC)標記的磷酸化細胞核因子抗體 |
別 名 | NF-kB p65 (phospho T254); p-NF-kB p65 (phospho T254); NF-κB p65(Phospho-Thr254); RELA(phospho T254); NF kB P65; NF-kB p65; NFKBp65; NF-κBp65; p65 NF kappaB; p65 NFkB; NFKBp65; RELA; Transcription Factor p65; v rel avian reticuloendotheliosis viral oncogene homolog A (nuclear factor of kappa light polypeptide gene enhancer in B cells 3 (p65)); V Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A; v rel reticuloendotheliosis viral oncogene homolog A (avian); v-rel reticuloendotheliosis viral oncogene homolog A; p65NFKB; Avian reticuloendotheliosis viral (v rel) oncogene homolog A; MGC131774; NFKB 3; NFKB3; Nuclear Factor NF Kappa B p65 Subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 3; Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B Cells. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
產(chǎn)品類型 | 磷酸化抗體 |
研究領(lǐng)域 | 腫瘤 免疫學 染色質(zhì)和核信號 信號轉(zhuǎn)導 轉(zhuǎn)錄調(diào)節(jié)因子 激酶和磷酸酶 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | Human, Mouse, Rat, (predicted: Dog, Pig, Cow, ) |
產(chǎn)品應(yīng)用 | IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 61kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated Synthesised phosphopeptide derived from human NFKBp65 around the phosphorylation site of Thr254 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: NF-kappa-B is a ubiquitous transcription factor involved in several biological processes. It is held in the cytoplasm in an inactive state by specific inhibitors. Upon degradation of the inhibitor, NF-kappa-B moves to the nucleus and activates transcription of specific genes. NF-kappa-B is composed of NFKB1 or NFKB2 bound to either REL, RELA, or RELB. The most abundant form of NF-kappa-B is NFKB1 complexed with the product of this gene, RELA. Four transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]. Function: NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappa-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-kappa-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Subunit: Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-c-Rel complex. Homodimer; component of the NF-kappa-B p65-p65 complex. Component of the NF-kappa-B p65-p52 complex. May interact with ETHE1. Binds AES and TLE1. Interacts with TP53BP2. Binds to and is phosphorylated by the activated form of either RPS6KA4 or RPS6KA5. Interacts with ING4 and this interaction may be indirect. Interacts with CARM1, USP48 and UNC5CL. Interacts with IRAK1BP1 (By similarity). Interacts with NFKBID (By similarity). Interacts with NFKBIA. Interacts with GSK3B. Interacts with NFKBIB (By similarity). Interacts with NFKBIE. Interacts with NFKBIZ. Interacts with EHMT1 (via ANK repeats) (By similarity). Part of a 70-90 kDa complex at least consisting of CHUK, IKBKB, NFKBIA, RELA, IKBKAP and MAP3K14. Interacts with HDAC3; HDAC3 mediates the deacetylation of RELA. Interacts with HDAC1; the interaction requires non-phosphorylated RELA. Interacts with CBP; the interaction requires phosphorylated RELA. Interacts (phosphorylated at 'Thr-254') with PIN1; the interaction inhibits p65 binding to NFKBIA. Interacts with SOCS1. Interacts with UXT. Interacts with MTDH and PHF11. Interacts with ARRB2. Interacts with human respiratory syncytial virus (HRSV) protein M2-1. Interacts with NFKBIA (when phosphorylated), the interaction is direct; phosphorylated NFKBIA is part of a SCF(BTRC)-like complex lacking CUL1. Interacts with RNF25. Interacts (via C-terminus) with DDX1. Interacts with UFL1 and COMMD1. Interacts with BRMS1; this promotes deacetylation of 'Lys-310'. Interacts with NOTCH2 (By similarity). Directly interacts with MEN1; this interaction represses NFKB-mediated transactivation. Interacts with AKIP1, which promotes the phosphorylation and nuclear retention of RELA. Interacts (via the RHD) with GFI1; the interaction, after bacterial lipopolysaccharide (LPS) stimulation, inhibits the transcriptional activity by interfering with the DNA-binding activity to target gene promoter DNA. Subcellular Location: Nucleus. Cytoplasm. Note=Colocalized with DDX1 in the nucleus upon TNF-alpha induction. Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B). Colocalizes with GFI1 in the nucleus after LPS stimulation. Post-translational modifications: Ubiquitinated, leading to its proteasomal degradation. Degradation is required for termination of NF-kappa-B response. Monomethylated at Lys-310 by SETD6. Monomethylation at Lys-310 is recognized by the ANK repeats of EHMT1 and promotes the formation of repressed chromatin at target genes, leading to down-regulation of NF-kappa-B transcription factor activity. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 without preventing monomethylation at Lys-310 and relieves the repression of target genes. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 and promotes transcription factor activity. Phosphorylation on Ser-536 stimulates acetylation on Lys-310 and interaction with CBP; the phosphorylated and acetylated forms show enhanced transcriptional activity. Phosphorylation at Ser-276 by RPS6KA4 and RPS6KA5 promotes its transactivation and transcriptional activities. Reversibly acetylated; the acetylation seems to be mediated by CBP, the deacetylation by HDAC3 and SIRT2. Acetylation at Lys-122 enhances DNA binding and impairs association with NFKBIA. Acetylation at Lys-310 is required for full transcriptional activity in the absence of effects on DNA binding and NFKBIA association. Acetylation can also lower DNA-binding and results in nuclear export. Interaction with BRMS1 promotes deacetylation of Lys-310. Lys-310 is deacetylated by SIRT2. S-nitrosylation of Cys-38 inactivates the enzyme activity. Sulfhydration at Cys-38 mediates the anti-apoptotic activity by promoting the interaction with RPS3 and activating the transcription factor activity. Sumoylation by PIAS3 negatively regulates DNA-bound activated NF-kappa-B. Similarity: Contains 1 RHD (Rel-like) domain. Database links: Entrez Gene: 5970 Human Omim: 164014 Human SwissProt: Q04206 Human Unigene: 502875 Human Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. NF-κBp65是一種重要的轉(zhuǎn)錄因子,NF-kBp65可激活參與炎癥、細胞增殖、細胞凋亡等基因的調(diào)節(jié),影響著細胞的凋亡,同時影響著腫瘤細胞對細胞毒性藥物及離子輻射的敏感性。ras基因誘導的致癌突變作用需NFkB的活化,提示NFkB在致癌發(fā)生方面可能起一定作用;另有文獻報道,在乳腺癌、非小細胞性肺癌、甲狀腺癌、T或B淋巴細胞白血病及病毒誘變導致的腫瘤等人類腫瘤中,NFkB活化或表達。 NF-кB可以保護細胞免受腫瘤壞死因子以及電離輻射等引起的凋亡作用,而抑制NFkB的表達可以增加TNF等引起的細胞凋亡,以及增加化療及放療對腫瘤細胞的敏感性。 |
1、抗體溶解方法 | |
2、抗體修復(fù)方式 | |
3、常用試劑的配制 | |
4、免疫組化操作步驟 | |
5、免疫組化問題解答 | |
6、Western Blotting 操作步驟 | |
7、Western Blotting 問題解答 | |
8、關(guān)于肽鏈的設(shè)計 | |
9、多肽的溶解與保存 | |
10、酶標抗體效價測定程序 | |
| 久久蜜桃私人影院色情 | 无码人妻精品一区二区三区蜜臀百度 | 亚洲精品久久久口爆吞精 | 精品国产人妻挑战黑人 | 杨思敏黑人极品XXX 近親相姦中出中文字幕 | 成人免费观看黄A片www直播 | 中文字幕在线免费观看 | 一级黄色片在线免费看 | 福利在线免费毛片 | 国产精品精品久久久久久 | 亚洲精品无码AAAAA爱的色放 | 我要的网站欧美性欧美性欧美性欧美性 | 66-m摸成人久久久 | 亚洲高清免费视频 | ..少妇泬出白浆狠狠躁日本动漫 | 国产91精品秘 入福利姬 | 欧美婬乱片A片AAA毛片地址 | 亚洲有码在线观看 | 俺来也俺也啪www色 四川一级丰满女老板毛 | 思思热视频在线观看 | 黑人玩弄人妻一区二区三区免费看 | 熟妇槡BBBB槡BBBB | 精品毛片一区二区看A片 | 91精品麻豆人妻一区二区 | 国产精品色情无码视频A片黑寡妇 | 成人做爰A片免费 | 中文字幕久久一二三区媚药他人妻 | 网站免费一区二区三区 | 免费无遮挡啪啪黑人 | 91午夜福利视频 | 媚黑婊和黑人国产精品 | 一级毛片久久久久久久 | 国产亲子伦A片免费看 | 蜜桃av秘 无码一区二区 | 亚州人成Va影院 | 国产精品久久久久久一级毛片许晴 | 特级大胆西西4444人体 | 免费看无码一级A片放24小时 | 安徽扫搡BBBB揉BBBB | 性猛交一级A片少妇视频无码 |