產(chǎn)品編號 | bs-12412R-PE-Cy3 |
英文名稱 | Rabbit Anti-phospho-SP1 (Thr453)/PE-Cy3 Conjugated antibody |
中文名稱 | PE-Cy3標(biāo)記的磷酸化轉(zhuǎn)錄生長因子SP1抗體 |
別 名 | SP1 (phospho T453); p-SP1 (phospho T453); SP1 (phospho-Thr453); SP1 (phospho-T453); p-SP1 (phospho T453); p-TSFP1 (phospho T453); Sp1 transcription factor isoform a; TSFP1; TSFP 1; Specificity protein 1; Transcription factor Sp1; SP 1; SP1; Sp1 transcription factor; SP1_HUMAN. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
產(chǎn)品類型 | 磷酸化抗體 |
研究領(lǐng)域 | 腫瘤 細胞生物 發(fā)育生物學(xué) 神經(jīng)生物學(xué) 信號轉(zhuǎn)導(dǎo) 干細胞 轉(zhuǎn)錄調(diào)節(jié)因子 鋅指蛋白 表觀遺傳學(xué) |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | (predicted: Human, Mouse, Rat, ) |
產(chǎn)品應(yīng)用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 81kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthesised phosphopeptide derived from human TSFP1 around the phosphorylation site of Thr453 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: Sp1 is a sequence-specific transcription factor that recognizes GGGGCGGGGC and closely related sequences, which are often referred to as GC boxes. Sp1 was initially identified as a HeLa cell-derived factor that selectively activates in vitro transcription from the SV40 promoter and binds to the multiple GC boxes in the 21-bp repeated elements in SV40. The sequence specificity of DNA binding is conferred by Zn (II) fingers, whereas a different region of Sp1 appears to regulate the affinity of DNA binding. Sp1 belongs to a subgroup of transcription factors that are phosphorylated upon binding to promoter sequences. Evidence suggests that the early growth response gene, Erg-1 (also known as Zif268 or NGF1-A) (7), may downregulate certain mammalian gene promoters by competing with Sp1 for binding to an overlapping binding motif. The gene encoding human Sp1 maps to chromosome 12q13.1. Function: Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Binds also the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Subunit: Interacts with ATF7IP, ATF7IP2, BAHD1, POGZ, HCFC1, AATF and PHC2. Interacts with varicella-zoster virus IE62 protein. Interacts with HIV-1 Vpr; the interaction is inhibited by SP1 O-glycosylation. Interacts with SV40 VP2/3 proteins. Interacts with SV40 major capsid protein VP1; this interaction leads to a cooperativity between the 2 proteins in DNA binding. Interacts with HLTF; the interaction may be required for basal transcriptional activity of HLTF. Interacts (deacetylated form) with EP300; the interaction enhances gene expression. Interacts with HDAC1 and JUN. Interacts with ELF1; the interaction is inhibited by glycosylation of SP1. Interaction with NFYA; the interaction is inhibited by glycosylation of SP1. Interacts with SMARCA4/BRG1. Interacts with ATF7IP and TBP. Interacts with MEIS2 isoform 4 and PBX1 isoform PBX1a. Subcellular Location: Nucleus. Cytoplasm. Nuclear location is governed by glycosylated/phosphorylated states. Insulin promotes nuclear location, while glucagon favors cytoplasmic location. Tissue Specificity: Up-regulated in adenocarcinomas of the stomach (at protein level). Post-translational modifications: Phosphorylated on multiple serine and threonine residues. Phosphorylation is coupled to ubiquitination, sumoylation and proteolytic processing. Phosphorylation on Ser-59 enhances proteolytic cleavage. Phosphorylation on Ser-7 enhances ubiquitination and protein degradation. Hyperphosphorylation on Ser-101 in response to DNA damage has no effect on transcriptional activity. MAPK1/MAPK3-mediated phosphorylation on Thr-453 and Thr-739 enhances VEGF transcription but, represses FGF2-triggered PDGFR-alpha transcription. Also implicated in the repression of RECK by ERBB2. Hyperphosphorylated on Thr-278 and Thr-739 during mitosis by MAPK8 shielding SP1 from degradation by the ubiquitin-dependent pathway. Phosphorylated in the zinc-finger domain by calmodulin-activated PKCzeta. Phosphorylation on Ser-641 by PKCzeta is critical for TSA-activated LHR gene expression through release of its repressor, p107. Phosphorylation on Thr-668, Ser-670 and Thr-681 is stimulated by angiotensin II via the AT1 receptor inducing increased binding to the PDGF-D promoter. This phosphorylation is increased in injured artey wall. Ser-59 and Thr-681 can both be dephosphorylated by PP2A during cell-cycle interphase. Dephosphorylation on Ser-59 leads to increased chromatin association during interphase and increases the transcriptional activity. On insulin stimulation, sequentially glycosylated and phosphorylated on several C-terminal serine and threonine residues. Acetylated. Acetylation/deacetylation events affect transcriptional activity. Deacetylation leads to an increase in the expression the 12(s)-lipooxygenase gene though recruitment of p300 to the promoter. Ubiquitinated. Ubiquitination occurs on the C-terminal proteolytically-cleaved peptide and is triggered by phosphorylation. Sumoylated by SUMO1. Sumoylation modulates proteolytic cleavage of the N-terminal repressor domain. Sumoylation levels are attenuated during tumorigenesis. Phosphorylation mediates SP1 desumoylation. Proteolytic cleavage in the N-terminal repressor domain is prevented by sumoylation. The C-terminal cleaved product is susceptible to degradation. O-glycosylated; contains at least 8 N-acetylglucosamine side chains. Levels are controlled by insulin and the SP1 phosphorylation states. Insulin-mediated O-glycosylation locates SP1 to the nucleus, where it is sequentially deglycosylated and phosphorylated. O-glycosylation affects transcriptional activity through disrupting the interaction with a number of transcription factors including ELF1 and NFYA. Also inhibits interaction with the HIV1 promoter. Inhibited by peroxisomome proliferator receptor gamma (PPARgamma). Similarity: Belongs to the Sp1 C2H2-type zinc-finger protein family. Contains 3 C2H2-type zinc fingers. Database links: Entrez Gene: 6667 Human Entrez Gene: 20683 Mouse Omim: 189906 Human SwissProt: P08047 Human SwissProt: O89090 Mouse Unigene: 620754 Human Unigene: 649191 Human Unigene: 4618 Mouse Unigene: 44609 Rat Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 蜜桃AV鲁一鲁一鲁一鲁樱花影院 | 中文字幕高清无码视频 | 精品丰满人妻少妇Av无码 | 国产伦精品一区二区三区免费视频 | 中文字幕熟女人妻偷伦天美 | 亚洲人午夜射精精品日韩 | 高清无码黄色视频在线 | 亚洲AV无码乱码国产精品黑人 | 一级黄色强奸黑人视频 | 国产精品女做a爽爽视频 | 欧美性猛交XXXX免费看蚧贝 | 在线鲁大师亚洲AV无码 | 一级BBBB视频BBBB | 艳妇乳肉豪妇荡乳AV无码福利 | 少妇搡BBBB搡BBB搡造 | 91视频在线观看 | 污视频网站在线免费看 | 亚洲欧洲精品mv免费看 | 中文有码人妻熟女久久电影 | 国产精品久久久久久久AV超碰 | 久久久久久成人毛片免费看 | 又大又粗又黄的视频 | 免费在线观看搞骚视频 | A片无码免费久久久秀色 | 国产丨熟女丨国产熟女 | 亚洲精品一品区二品区三品区 | 亚洲精品国偷拍自产在线观看91 | 无码人妻AV一区二区 | 在线国产精品免费播放 | !()婬乱三级在线观看 | 东北少妇露脸无套对白 | 亚洲无码在线观看一区 | 国产乱国产乱熟女300部 | 少妇偷人吃奶呻呻吟嗯啊 | 91麻豆精品A片国产在线观看 | 国产精品老熟女视频一区二区 | 黄色AAAAA级网站 | 国产精品内射婷婷一级二 | 亚洲精品乱码久久久久久花季 | 少妇搡BBBB搡BBB搡视频一级 |