產(chǎn)品編號(hào) | bs-16680R-HRP |
英文名稱(chēng) | Rabbit Anti-Phospho-Insulin Receptor (Tyr999) /HRP Conjugated antibody |
中文名稱(chēng) | 辣根過(guò)氧化物酶標(biāo)記的磷酸化胰島素受體抗體 |
別 名 | Insulin Receptor (phospho Y999); p-Insulin Receptor (phospho Y999); CD 220; CD220; CD220 antigen; HHF 5; HHF5; human insulin receptor; INSR; INSR_HUMAN; Insulin receptor subunit beta; IR 1; IR; IR-1; IR1. |
規(guī)格價(jià)格 | 100ul/2980元 購(gòu)買(mǎi) 大包裝/詢(xún)價(jià) |
說(shuō) 明 書(shū) | 100ul |
產(chǎn)品類(lèi)型 | 磷酸化抗體 |
研究領(lǐng)域 | 細(xì)胞生物 信號(hào)轉(zhuǎn)導(dǎo) 生長(zhǎng)因子和激素 激酶和磷酸酶 糖尿病 新陳代謝 細(xì)胞膜蛋白 |
抗體來(lái)源 | Rabbit |
克隆類(lèi)型 | Polyclonal |
交叉反應(yīng) | Human, Rat, (predicted: Chicken, Cow, Horse, ) |
產(chǎn)品應(yīng)用 | WB=1:500-2000 ELISA=1:100-1000 IHC-P=1:50-200 IHC-F=1:50-200 ICC=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 70kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthesised phosphopeptide derived from human Insulin Receptor around the phosphorylation site of Tyr999 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲(chǔ) 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: After removal of the precursor signal peptide, the insulin receptor precursor is post-translationally cleaved into two chains (alpha and beta) that are covalently linked. Binding of insulin to the insulin receptor (INSR) stimulates glucose uptake. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008] Function: Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin. Subunit: Tetramer of 2 alpha and 2 beta chains linked by disulfide bonds. The alpha chains contribute to the formation of the ligand-binding domain, while the beta chains carry the kinase domain. Forms a hybrid receptor with IGF1R, the hybrid is a tetramer consisting of 1 alpha chain and 1 beta chain of INSR and 1 alpha chain and 1 beta chain of IGF1R. Interacts with SORBS1 but dissociates from it following insulin stimulation. Binds SH2B2. Activated form of INSR interacts (via Tyr-999) with the PTB/PID domains of IRS1 and SHC1. The sequences surrounding the phosphorylated NPXY motif contribute differentially to either IRS1 or SHC1 recognition. Interacts (via tyrosines in the C-terminus) with IRS2 (via PTB domain and 591-786 AA); the 591-786 would be the primary anchor of IRS2 to INSR while the PTB domain would have a stabilizing action on the interaction with INSR. Interacts with the SH2 domains of the 85 kDa regulatory subunit of PI3K (PIK3R1) in vitro, when autophosphorylated on tyrosine residues. Interacts with SOCS7. Interacts (via the phosphorylated Tyr-999), with SOCS3. Interacts (via the phosphorylated Tyr-1185, Tyr-1189, Tyr-1190) with SOCS1. Interacts with CAV2 (tyrosine-phosphorylated form); the interaction is increased with 'Tyr-27'phosphorylation of CAV2 (By similarity). Interacts with ARRB2 (By similarity). Interacts with GRB10; this interaction blocks the association between IRS1/IRS2 and INSR, significantly reduces insulin-stimulated tyrosine phosphorylation of IRS1 and IRS2 and thus decreases insulin signaling. Interacts with GRB7 (By similarity). Interacts with PDPK1. Interacts (via Tyr-1190) with GRB14 (via BPS domain); this interaction protects the tyrosines in the activation loop from dephosphorylation, but promotes dephosphorylation of Tyr-999, this results in decreased interaction with, and phosphorylation of, IRS1. Interacts (via subunit alpha) with ENPP1 (via 485-599 AA); this interaction blocks autophosphorylation. Interacts with PTPRE; this interaction is dependent of Tyr-1185, Tyr-1189 and Tyr-1190 of the INSR. Interacts with STAT5B (via SH2 domain). Interacts with PTPRF. Subcellular Location: Cell membrane. Tissue Specificity: Isoform Long and isoform Short are predominantly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic acini, placenta vascular endothelium, fibroblasts, monocytes, granulocytes, erythrocytes and skin. Isoform Short is preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney. Found as a hybrid receptor with IGF1R in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Overexpressed in several tumors, including breast, colon, lung, ovary, and thyroid carcinomas. Post-translational modifications: After being transported from the endoplasmic reticulum to the Golgi apparatus, the single glycosylated precursor is further glycosylated and then cleaved, followed by its transport to the plasma membrane. DISEASE: Rabson-Mendenhall syndrome Leprechaunism Diabetes mellitus, non-insulin-dependent Familial hyperinsulinemic hypoglycemia 5 Insulin-resistant diabetes mellitus with acanthosis nigricans type A. Similarity: Belongs to the protein kinase superfamily. Tyr protein kinase family. Insulin receptor subfamily. Contains 3 fibronectin type-III domains. Contains 1 protein kinase domain. Database links: Entrez Gene: 3643 Human Entrez Gene: 16337 Mouse Omim: 147670 Human SwissProt: P06213 Human SwissProt: P15208 Mouse Unigene: 465744 Human Unigene: 268003 Mouse Unigene: 9876 Rat Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 人人妻人人爽人人DⅤD | 波多野结衣乳巨码无在线观看视频 | 久久精品国产亚洲7777 | 99国产精品免费网站 | 国产免费无遮挡又粗又猛又硬又黄又大 | 91麻豆精品A片国产在线观看 | 欧美性色黄大片www 高清在线观看网站无码 | 国产乱婬AV片免费又粗又大又猛 | 国产麻豆剧传媒精品国产 | 视频丨9l 丨口爆 | 国产一区二区三区在线 | 国产精品熟女一区二区 | 综合福利天久久久 | 国产AV一区二区三区 | 青青草玖玖爱在线视频 | 91丝袜精品久久久久久无码人妻 | 91传媒视频网站在线观看 | 中文字幕在线免费看 | 国产无遮挡A片又黄又爽 | 99人妻碰碰碰久久久久禁片 | 国产黄色视频在线 | A片女女女女女女BBBB | 一级A片黄女人高潮网站 | 国产成人一区二区红桃解说 | 亚洲男人天堂视频 | 国产乱妇无码A片免费看视频小说 | 韩国一级婬片免费看 | 黄色动漫网址在线播放 | 无码精品少妇一区二区三区久久 | 亚洲自拍一区在线 | 黄色视频国产在线观看 | whichAV在线观看| 国产综合永久精品日韩91蜜 | 高清无码黄色视频在线观看 | 亚洲精品一区二区三区四区高清 | 成年网站在线观看 | 国产一级毛片国产一级A片农村 | 三级片激情免费观看网站 | 欧一美一交一配一交一交一视频 | 国产探花免费无码一区二区 |