產品編號 | bsm-33387M-RBITC |
英文名稱 | Mouse Anti-Acetyl NF kB P65 (Lys314/Lys315)/RBITC Conjugated antibody |
中文名稱 | 羅丹明(RBITC)標記的乙?;毎艘蜃?K314/K315)單克隆抗體 |
別 名 | NF-kB p65 (Acetyl K314/K315); Acetyl-NF-kB p65 (K314/K315); NFkB-p65(Acetyl K314/K315); RELA(Acetyl K314/K315); NF kB P65; NF-kB p65; NFKBp65; NF-κBp65; p65 NF kappaB; p65 NFkB; NFKBp65; RELA; Transcription Factor p65; v rel avian reticuloendotheliosis viral oncogene homolog A (nuclear factor of kappa light polypeptide gene enhancer in B cells 3 (p65)); V Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A; v rel reticuloendotheliosis viral oncogene homolog A (avian); v-rel reticuloendotheliosis viral oncogene homolog A; p65NFKB; Avian reticuloendotheliosis viral (v rel) oncogene homolog A; MGC131774; NFKB 3; NFKB3; Nuclear Factor NF Kappa B p65 Subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 3; Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B Cells. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
研究領域 | 腫瘤 免疫學 信號轉導 生長因子和激素 轉錄調節(jié)因子 |
抗體來源 | Mouse |
克隆類型 | Monoclonal |
克 隆 號 | 4B11 |
交叉反應 | Rat, (predicted: Human, Mouse, ) |
產品應用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 61kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated Synthesised phosphopeptide derived from human NFKBp65 around the acetylation site of Lys314/315 |
亞 型 | IgG |
純化方法 | affinity purified by Protein G |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產品介紹 |
background: NF-kappa-B is a ubiquitous transcription factor involved in several biological processes. It is held in the cytoplasm in an inactive state by specific inhibitors. Upon degradation of the inhibitor, NF-kappa-B moves to the nucleus and activates transcription of specific genes. NF-kappa-B is composed of NFKB1 or NFKB2 bound to either REL, RELA, or RELB. The most abundant form of NF-kappa-B is NFKB1 complexed with the product of this gene, RELA. Four transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]. Function: NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappa-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-kappa-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Subunit: Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-c-Rel complex. Homodimer; component of the NF-kappa-B p65-p65 complex. Component of the NF-kappa-B p65-p52 complex. May interact with ETHE1. Binds AES and TLE1. Interacts with TP53BP2. Binds to and is phosphorylated by the activated form of either RPS6KA4 or RPS6KA5. Interacts with ING4 and this interaction may be indirect. Interacts with CARM1, USP48 and UNC5CL. Interacts with IRAK1BP1 (By similarity). Interacts with NFKBID (By similarity). Interacts with NFKBIA. Interacts with GSK3B. Interacts with NFKBIB (By similarity). Interacts with NFKBIE. Interacts with NFKBIZ. Interacts with EHMT1 (via ANK repeats) (By similarity). Part of a 70-90 kDa complex at least consisting of CHUK, IKBKB, NFKBIA, RELA, IKBKAP and MAP3K14. Interacts with HDAC3; HDAC3 mediates the deacetylation of RELA. Interacts with HDAC1; the interaction requires non-phosphorylated RELA. Interacts with CBP; the interaction requires phosphorylated RELA. Interacts (phosphorylated at 'Thr-254') with PIN1; the interaction inhibits p65 binding to NFKBIA. Interacts with SOCS1. Interacts with UXT. Interacts with MTDH and PHF11. Interacts with ARRB2. Interacts with human respiratory syncytial virus (HRSV) protein M2-1. Interacts with NFKBIA (when phosphorylated), the interaction is direct; phosphorylated NFKBIA is part of a SCF(BTRC)-like complex lacking CUL1. Interacts with RNF25. Interacts (via C-terminus) with DDX1. Interacts with UFL1 and COMMD1. Interacts with BRMS1; this promotes deacetylation of 'Lys-310'. Interacts with NOTCH2 (By similarity). Directly interacts with MEN1; this interaction represses NFKB-mediated transactivation. Interacts with AKIP1, which promotes the phosphorylation and nuclear retention of RELA. Interacts (via the RHD) with GFI1; the interaction, after bacterial lipopolysaccharide (LPS) stimulation, inhibits the transcriptional activity by interfering with the DNA-binding activity to target gene promoter DNA. Subcellular Location: Nucleus. Cytoplasm. Note=Colocalized with DDX1 in the nucleus upon TNF-alpha induction. Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B). Colocalizes with GFI1 in the nucleus after LPS stimulation. Post-translational modifications: biquitinated, leading to its proteasomal degradation. Degradation is required for termination of NF-kappa-B response. Monomethylated at Lys-310 by SETD6. Monomethylation at Lys-310 is recognized by the ANK repeats of EHMT1 and promotes the formation of repressed chromatin at target genes, leading to down-regulation of NF-kappa-B transcription factor activity. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 without preventing monomethylation at Lys-310 and relieves the repression of target genes. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 and promotes transcription factor activity. Phosphorylation on Ser-536 stimulates acetylation on Lys-310 and interaction with CBP; the phosphorylated and acetylated forms show enhanced transcriptional activity. Phosphorylation at Ser-276 by RPS6KA4 and RPS6KA5 promotes its transactivation and transcriptional activities. Reversibly acetylated; the acetylation seems to be mediated by CBP, the deacetylation by HDAC3 and SIRT2. Acetylation at Lys-122 enhances DNA binding and impairs association with NFKBIA. Acetylation at Lys-310 is required for full transcriptional activity in the absence of effects on DNA binding and NFKBIA association. Acetylation can also lower DNA-binding and results in nuclear export. Interaction with BRMS1 promotes deacetylation of Lys-310. Lys-310 is deacetylated by SIRT2. S-nitrosylation of Cys-38 inactivates the enzyme activity. Sulfhydration at Cys-38 mediates the anti-apoptotic activity by promoting the interaction with RPS3 and activating the transcription factor activity. Sumoylation by PIAS3 negatively regulates DNA-bound activated NF-kappa-B. Similarity: Contains 1 RHD (Rel-like) domain. Database links: Entrez Gene: 5970 Human Entrez Gene: 19697 Mouse Omim: 164014 Human SwissProt: Q04206 Human SwissProt: Q04207 Mouse Unigene: 502875 Human Unigene: 249966 Mouse Unigene: 19480 Rat Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. 轉錄調節(jié)因子(Transcriptin Regulators) NF-κBp65是一種重要的轉錄因子,NF-kBp65可激活參與炎癥、細胞增殖、細胞凋亡等基因的調節(jié),影響著細胞的凋亡,同時影響著腫瘤細胞對細胞毒性藥物及離子輻射的敏感性。ras基因誘導的致癌突變作用需NFkB的活化,提示NFkB在致癌發(fā)生方面可能起一定作用;另有文獻報道,在乳腺癌、非小細胞性肺癌、甲狀腺癌、T或B淋巴細胞白血病及病毒誘變導致的腫瘤等人類腫瘤中,NFkB活化或表達。 |
1、抗體溶解方法 | |
2、抗體修復方式 | |
3、常用試劑的配制 | |
4、免疫組化操作步驟 | |
5、免疫組化問題解答 | |
6、Western Blotting 操作步驟 | |
7、Western Blotting 問題解答 | |
8、關于肽鏈的設計 | |
9、多肽的溶解與保存 | |
10、酶標抗體效價測定程序 | |
| 亚洲日韩欧美在线观看 | 成人片亚洲AV在线观看 | 在线观看黄色小视频一区二区 | 农村妇女亂伦91熟妇 | 四川乱子伦视频国产 | 少妇被大黑捧猛烈进出的 | 影音先锋女人aV鲁色资源网站 | 国产美女特级嫩嫩嫩BBB | 精品国产乱码久久久久久蜜柚 | 亚洲人成色777777精品音频 | 人人爽人人爽人人爽西 | 日批视频免费观看 | 国产精品久久久久久一级毛皮陈红 | 国产精品人成A片一区二区 国产亚洲东北熟女高潮叫床 | 蜜桃在线码无精品秘入口九色 | 亚洲AV无码乱码精品 | 国产自产精品一区精品 | 视频在线一区二区三区 | 一本色道久久99精品综合蜜臀 | www.com.黄色视频 | 91无码粉嫩小泬无套在线哈尔滨 | 国产亚洲一区二区精品 | 亚洲日韩寡妇久久久久久 | 久久久无码精品人妻一区蜜桃网站 | 亚洲色无色A片一区二区 | XXXCOM在线观看 | 国产精品爆乳在线第一区 | 四川女人高潮一级毛片 | 精品人妻伦一二三区久久果冻传媒 | 美女又爽 又黄 视频 | 性生活国产精品久久 | 亚洲中文字幕无限乱码 | 无码人妻一区二区三区蜜桃视频 | 亚洲精品巨爆乳无码大乳巨 | 丰满人妻的婬乱生活2 | 99人妻碰碰碰久久久久禁片 | 成人精品一区二区三区A片 99人妻人人揉人人澡人人 | 亚洲AV无码久久寂寞少妇多毛 | 亚 熟 妻 国 拍 丝 页 | 国产乱国产乱老熟300部视频 |